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Abstract. Time-domain interferometry of synchrotron radiation (TDI) has recently been used as a tool for
investigating diffusion in glasses. This work deals with an extension of this technique to ordered structures.
In a TDI experiment performed on the B2 alloy CoGa at the APS the intensity scattered into Bragg
directions showed no detectable quasielastic signal. Experimental lower limits of the elastic contribution
are given. They are in accordance with the coherent scattering function derived in this paper. This result
indicates that TDI can be applied to diffusion in crystalline solids, e.g. intermetallic alloys, by using diffuse
scattering. Requirements and limitations of diffuse scattering experiments are discussed.

PACS. 66.30.Fq Self-diffusion in metals, semimetals, and alloys – 76.80.+y Mössbauer effect; other gamma-
ray spectroscopy – 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters

1 Introduction

Atomistic methods are important tools for studies of the
microscopic diffusion mechanism in complex crystalline
materials like intermetallic alloys as they allow to deter-
mine the frequencies and direction of atomic jumps [1]. Up
to now three methods using quasielastic effects have been
successfully applied to study self diffusion in intermetal-
lic alloys: Quasielastic Mössbauer spectroscopy (QMS)
[2], nuclear resonant scattering (NRS) [3] and quasielas-
tic neutron scattering (QNS) [4]. Whereas QMS and NRS
are practically limited to 57Fe for diffusion studies in crys-
talline solids, the applicability of QNS is restricted to
fast diffusers due to the comparably low energy resolu-
tion of currently available backscattering spectrometers
(µeV compared with neV for QMS and NRS). Even neu-
tron spin-echo spectrometry is not able to compete with
Mössbauer spectroscopy at the momentum transfers which
are required in order to investigate diffusion processes on
the atomic scale.

A method based on the Mössbauer effect, but using the
powerful features of synchrotron radiation is time domain
interferometry of synchrotron radiation (TDI). The main
advantage of this technique is given by the fact that it
does not require resonant Mössbauer nuclei and therefore
offers an a priori unlimited choice of targets. A detailed
description of this method can be found in a paper of
Baron et al. [5]. Essentially, TDI consists in extracting the
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Fig. 1. Experimental setup. The insert shows schematically
the time dependence of the velocity of the stainless-steel foil
positioned upstream relative to the sample.

intermediate scattering function, S(q, t), and therewith
the atomic correlation function, G(r, t), from the interfer-
ence of a reference wave with a wave scattered by the dif-
fusing atoms. The two waves are created by instantaneous
excitation of two targets containing 57Fe atoms – one be-
fore and one behind the sample. One of the two targets is
kept in constant motion, which results in a small relative
energy shift leading to a beat pattern with a well defined
frequency Ω. These beats are disturbed by quasielastic
scattering, which is described by the intermediate scat-
tering function. The experimental setup is schematically
shown in Figure 1. According to Baron et al. [5] S(q, t)
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is related to the momentum-time differential cross section
via

(
∂2σ

∂q∂t
)coh ∝ [1 + fDW(q) cos(Ωt)S(q, t)], (1)

where, fDW stands for the Debye-Waller factor.
The first TDI experiment has been performed on the

glassy system glycerol [5]. However, the great interest
in investigations of diffusion mechanisms in intermetal-
lic compounds like NiAl, Ni3Al, TiAl, etc., which are
not accessible to the microscopic methods cited above,
makes an adaptation of TDI to crystalline solids partic-
ularly promising. Ruebenbauer and Wdowik [6] recently
proposed to investigate the time dependence of the inten-
sity of Mössbauer radiation scattered into Bragg reflec-
tions by intermetallic alloys (hence non-Bravais lattices).
While this procedure of course provides the highest inten-
sities, there are some problems associated to it, regarding
the proportion of the quasielastic contribution observable
in these directions. A simple picture suggests that scat-
tering from Bravais lattices into Bragg directions shows
no quasielastic effects since wave parts are scattered from
different lattice sites without relative phase shifts [7]. In
the same simple picture, the problem is considerably more
subtle for non-Bravais lattices – especially for superlattice
peaks where the different parts of the wave scattered by
atoms jumping between different sublattices are no longer
in phase but show relative phase shifts, e.g., phase shift
π for nearest-neighbour jumps on a B2 lattice. This sub-
tlety is illustrated by the fact that the incoherent scat-
tering function, Sinc(q, t), is elastic at reciprocal lattice
points corresponding to fundamental Bragg reflections and
quasielastic in reciprocal lattice points corresponding to
superlattice reflections. This paper is set out to determine
experimentally at which point TDI in Bragg directions
might be used for diffusion studies in crystalline alloys.
Furthermore, we will derive the coherent scattering func-
tion for the discussed case using the Van Hove formalism
[8]. This will be done for Bragg reflections as well as for
diffuse scattering due to lattice disorder.

2 Experiment

We have applied the TDI technique to diffusion in the in-
termetallic alloy CoGa. The experiment was performed at
the beamline 3ID at the Advanced Photon Source (APS,
Argonne National Laboratories). Preliminary results have
been published in reference [9] without a detailed inter-
pretation.

2.1 Sample

The experiment was performed on a CoGa single crystal
with 62.7(5) at.% Co which was cut parallel to the 〈100〉
lattice plane. CoGa crystallizes in theB2 structure and ex-
hibits triple defects [10]. The lattice constant [11] is 2.875
Å at 1173 K. Since the composition is far from stoichiom-
etry, a high degree of disorder, mainly due to the presence
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Fig. 2. Lines: Arrhenius plot of Co diffusion coefficients in
Co60Ga40 according to reference [13]. Circles: Points corre-
sponding to the temperatures where the TDI measurements
at the 〈100〉 and 〈200〉 reflection were carried out. The shaded
area indicates the region of diffusivities where the residence
times of the atoms on the lattice sites are comparable to the
lifetime of the 57Fe excitation. Points corresponding to mea-
surements at temperatures below 870 K are not shown in this
diagram.

of Co atoms on the Ga sublattice, is expected. QNS ex-
periments [12] showed that Co atoms diffuse via jumps
between nearest neighbour sites. Tracer experiments in-
dicate that Ga diffusion is several times slower than Co
diffusion [13]. While these measurements point towards
jumps to next-nearest neighbour sites, QNS experiments
[14,15] on the very similar B2 alloy NiGa indicate NN
jumps for Ga. We have accounted for this uncertainty of
the Ga diffusion in the data treatment.

2.2 Experimental setup

During the experiment at the beamline 3ID, the APS stor-
age ring was operated in the ‘timing mode’ which provides
a single bunch every 153 ns. The undulator was tuned
to the 57Fe transition at 14.4 keV. The high resolution
monochromator allowed to select a 2 meV bandwidth. The
temperature was chosen such that the relaxation time τ
of Co diffusion is of the same order of magnitude as the
lifetime of the excited state of the 57Fe Mössbauer nu-
clei (141 ns). Figure 2 shows the diffusion constants of Co
for the temperatures where TDI measurements have been
carried out, compared to the range of diffusivities which is
convenient for Mössbauer experiments due to the compa-
rability of τ to the Mössbauer lifetime. The diffusion con-
stants for both constituents of CoGa have been taken from
Stolwijk et al. [13]. The measurements at lower tempera-
tures were carried out in order to determine the diffusion-
independent parameters for the fitting procedure.

The experimental setup is sketched in Figure 1. We
used two stainless-steel foils with thicknesses of 1.03 µ
and 1.08 µ, respectively. The foil upstream relative to
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Fig. 3. Time dependence of the count rate in the 〈200〉 Bragg
reflection at room temperature. Line: Time dependence accord-
ing to equation (1). Insert: Temperature dependence of the
Debye-Waller factor for the 〈200〉 spectra at lower tempera-
tures. Line: Debye-model.

the sample position was moved at a constant velocity of
about 7.2 mm/s at a frequency of 11 Hz. This produced
a frequency shift between the two foils corresponding to
one beat every 12.2 ns, respectively Ω = 0.515 ns−1. An
avalanche photo diode detector provided a resolution un-
der 1 ns starting approximately 20 ns after the bunch.
Two high temperature furnaces were used – one allow-
ing measurements in Bragg geometry, i.e., backscattering
and the second one for Laue geometry, i.e., transmission.
Count rates in transmission geometry were considerably
higher, probably due to less absorption losses. The tem-
perature calibration of the furnaces was carried out using
the isomer shift of iron.

We measured the time dependence of the intensity in
the 〈100〉 reflection which is of superlattice type and the
〈200〉 reflection which is fundamental. Measurements were
performed at 290, 730, 870, 1000, 1050, 1110, 1170, 1230,
1290 and 1350 K for the 〈200〉 reflection and 290, 1000,
1010, 1230, 1350 and 1410 K for the 〈100〉 reflection. Be-
cause of the very similar form factors of Co and Ga atoms
the count rates in the superlattice peak were significantly
lower than in the fundamental peak. The resonant count
rates were typically between some 100 Hz (fundamental
peak at RT) and 1 Hz or less (superlattice peak at 1350 K).
The room temperature spectrum of the 〈200〉 reflection is
shown in Figure 3.

Special care was taken to avoid vibrations, e.g. from
the vacuum pump of the high temperature furnace. How-
ever, there remained vibrations leading to a decrease of
the beat amplitude with time – even at room tempera-
ture. These vibrations have been taken into account via
a Gaussian shaped frequency distribution with width σΩ .
An additional smearing-out of the interference pattern at
all temperatures may arise from variations of the effec-
tive thickness L of the stainless steel foils which has been
taken into account in the fit via a Gaussian shaped thick-
ness distribution with width σL.

2.3 Data treatment

All spectra that were taken at temperatures where dif-
fusion is relevant (T ≥ 1230 K) were fitted with a sum
of a purely elastic and a purely quasielastic component.
The quasielastic component was approximated by an ex-
ponential decay with relaxation time τ̄ , the latter being
calculated from the diffusion constants of Stolwijk et al.
[13] via τ̄ = l2/(6D) where l denotes the jump length
for NN-jumps on a B2 lattice. The elastic contribution is
indicated by the coefficient η where η = 1 denotes com-
pletely elastic scattering and η = 0 completely quasielas-
tic scattering. It is important to note that the measured
elastic contribution, η, may hide a quasielastic contribu-
tion which might not be detectable due to the comparably
slow Ga diffusion. One therefore has to account for the
fact that a considerable part of the experimentally found
elastic contribution may in reality be quasielastic scatter-
ing from Ga with its long relaxation times. We do this
by introducing a corrected lower limit for elastic scatter-
ing, denoted with εmin, instead of the experimental lower
limit, ηmin. The measured elastic contribution η then con-
tains the elastic part, ε, as well as a term which takes
into account the hidden quasielastic scattering from Ga
atoms and a quasielastic part with relaxation time τ̄ from
diffusing Co atoms. The intermediate scattering function
reads

S(t) ∝ η + (1− η) exp(− t
τ̄

) =

ε+ (1− ε)IGa + (1− ε)ICo exp(− t
τ̄

), (2)

where the relative contributions ICo and IGa are propor-
tional to the respective atomic form factors and concen-
trations and scaled to ICo + IGa = 1. By having assumed
the relaxation time corresponding to Ga diffusion to be
infinitely long, we have made the most careful choice re-
garding the lower limit εmin, which will be the main result
of this paper. An eventual undetected quasielastic contri-
bution from Ga is then contained in the term (1−ε)IGa so
that the total measured elastic contribution is assumed to
be η = ε+ (1− ε)IGa. In this way uncertainties regarding
the exact Ga diffusion mechanism are taken into account.

For each fit of the high temperature spectra the am-
plitude, the background and the beat frequency, Ω, were
refined while the parameters L, σΩ, σL and fDW which
are correlated to η were fixed during the fit. The effective
thickness, L, of the stainless steel foils was fixed to the
average value, L = 17.5, obtained in the fits of the low
temperature spectra. While the simulated spectra were
very sensitive to changes in the width of the frequency
distribution, σΩ, the dependence of χ2 from the thick-
ness distribution σL turned out to be rather weak. σΩ was
fixed to the average values of the low temperature spec-
tra, σΩ/Ω = 0.024, while σL was estimated to σL = 0.8.
The Debye-Waller factor, fDW, was extrapolated from low
temperature measurements of the 〈200〉 reflection (see in-
sert of Fig. 3) to the values given in Table 1 by using the
Debye approximation.
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Table 1. Estimated relaxation times τ̄ , extrapolated Debye-
Waller factor fDW as well as the lower limits for the elastic
contribution ηmin (raw) and εmin (corrected value) for the rel-
evant high temperature spectra.

T (K) reflection τ̄ (ns) fDW ηmin εmin

1350 〈100〉 19.5 0.808 0.86 0.75

1410 〈100〉 6.0 0.807 0.72 0.49

1230 〈200〉 182 0.745 0.92 0.85

1290 〈200〉 51 0.741 0.96 0.93

1350 〈200〉 19.5 0.737 0.97 0.94
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Fig. 4. Time dependence of the count rate in the 〈200〉 Bragg
reflection at 1350 K. Lines: Time dependence according to
equations (1) and (2) assuming η = 0 (solid) and η = 1
(dashed). Insert: Dependence of χ2 as a function of η for this
spectrum.

The double differential cross-section, equation (1),
with the intermediate scattering function, equation (2),
were then fitted to the high temperature spectra for dif-
ferent values of η. The best fits to the two extreme cases,
η = 1 and η = 0, are shown in Figure 4 for the 〈200〉 and
Figure 5 for the 〈100〉 reflection, both at 1350 K. From
each fit we have calculated a χ2 value in order to determine
the sensitivity of the experimental spectra to elastic and
quasielastic scattering, respectively. Two of those plots are
shown in the inserts of Figures 4 and 5.

2.4 Results

For all spectra the minimum of χ2 was found to be close
to η = 1. The minimum was sharpest for those spectra
with good statistics and short relaxation times τ̄ . For each
spectrum a lower limit, ηmin, for the experimentally deter-
minable elastic contribution was calculated as follows: In
those cases where the value of η0 corresponding to the
minimum of the χ2 parabola was smaller than unity, a
99% confidence band, ∆η, was subtracted from η0, hence
ηmin = η0−∆η. For the spectra where η0 > 1, we assumed
ηmin = 1−∆η.
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Fig. 5. Time dependence of the count rate in the 〈100〉 Bragg
reflection at 1350 K. Lines: Time dependence according to
equations (1) and (2) assuming η = 0 (solid) and η = 1
(dashed). In order to improve the readability of the figure, four
channels compared to Figures 3 and 4 were grouped together.
Insert: Dependence of χ2 as a function of η for this spectrum.

The lower limit for the elastic contribution, ηmin, was
found to be 0.86 for the 〈100〉 reflection and 0.97 for the
〈200〉 reflection (see Tab. 1). However, as already men-
tioned above, the experimentally found elastic contribu-
tion may hide a quasielastic part with long relaxation
times corresponding to the slow Ga diffusion. This was
taken into account by subtracting from unity the term
(1 − η)(ICo + IGa)/ICo. This yields the corrected lower
limit for elastic scattering, εmin. Finally, we get the fol-
lowing results: εmin = 0.75 for the 〈100〉 reflection and
εmin = 0.94 for the 〈200〉 reflection.

3 Interpretation

Our experiment indicates that the intensity scattered into
Bragg reflections is mainly elastic, in fundamental as well
as in superlattice reflections. This is in accordance with
the following derivation of the coherent scattering factor
using the Van Hove formalism:

An exact expression for the intermediate scattering
function for self diffusion via vacancies in intermetallic
alloys can be obtained by Fourier transformation of the
pair correlation function G(r, t) which is the sum of the
pair correlation functions Gji (r, t) defined separately re-
ferring to different sublattices, i and j, multiplied with
cj, the concentration of the scattering element on the jth
sublattice:

G(r, t) =
∑
i,j

cjG
j
i (r, t). (3)

For a detailed definition of Gji (r, t) see reference [16].
Instead of one rate equation – as in the Chudley-Elliott
model for Bravais lattices [17] – we have to deal with a



M. Kaisermayr et al.: Time-domain interferometry for diffusion in ordered alloys 339

Table 2. Properties of scattering into selected points in re-
ciprocal space. The incoherent scattering function, Sinc(q, t),
according to Randl et al. [20], the coherent scattering function,
S(q, t), according to equation (4). The following abbreviations
are used: el.: elastic; qe.: quasielastic; diff.: diffuse.

Bravais non Bravais

S(q, t) Sinc(q, t) S(q, t) Sinc(q, t)

fundamental el. el. el.+(diff.,qe.) el.

superlattice – – el.+(diff., qe.) qe.

off Bragg diff., qe. qe. diff., qe. qe.

set of rate equations which can be solved using the so
called jump matrix [18–20] which contains the vectors and
frequencies corresponding to jumps between the different
sublattices.

A somewhat lengthy but straightforward calculation
(please see again Ref. [16]) yields:

S(q, t) =
∑
p

w′p exp(Mpt)

+N
∑
G

δ(q−G)
∑
i,j

ci cj exp(iqlji ), (4)

where Mp denotes the pth eigenvalue of the jump matrix,
G is a reciprocal lattice vector and w′p are weighting fac-
tors,

w′p =
∑
i,j

(1− cj)
√
cicj(bp)i(bp∗)j , (5)

where bpi denotes the ith component of the pth eigenvector
of the jump matrix.

S(q, t) consists of a time dependent term describing
isotropic diffuse scattering and a term containing Bragg
scattering which is time independent. Hence – apart from
a negligible contribution of diffuse scattering – no time
dependence can be expected in Bragg directions. This is
exactly what has been observed in the experiment. An
overview over the scattering properties according to equa-
tion (5) compared to incoherent scattering is given in Ta-
ble 2. Note, that equation (4) is valid only for non-Bravais
lattices which are occupied by one type of scattering atoms
only – of course an unrealistic case for X-ray scattering.
However, as is shown in Appendix A, the situation re-
mains qualitatively unchanged if the lattice is occupied
by more than one scattering element: All interferences be-
tween atoms of different elements are contained in a Bragg
term which is strictly time independent.

4 TDI using diffuse scattering

The first term on the right hand side of equation (4) de-
scribes diffuse scattering due to lattice disorder. This term
is time dependent and therefore diffuse scattering appears
in principle suitable for diffusion studies in intermetallic

alloys using TDI. Please note, that since the weights of the
exponentials in equation (5) contain a term (1 − cj) the
absolute intensity vanishes for perfectly ordered lattices.
However, intermetallic compounds usually exhibit defect
concentrations up to several percent at temperatures rel-
evant for diffusion studies and are therefore expected to
show quasielastic diffuse scattering, due to partial site oc-
cupation. This effect can further be enhanced by going to
off-stoichiometric compositions.

An example of the intermediate scattering function for
a B2 structure is shown in Figure 6. The intermediate
scattering function in this case is a sum of two exponential
decays,

S(t) ∝ w′1exp(−M1t) + w′2exp(−M2t), (6)

the relative weights, wi, and decay rates, Mi, of which
are shown as a function of the momentum transfer q. The
lattice constant was assumed to be 3 Å, i.e. similar as in
systems like CoGa, FeAl or NiAl. Both sublattices shall
be partially occupied by the same element with occupa-
tion probabilities c1 = 0.7 and c2 = 0.3, respectively. A
derivation of S(q,t) for B2-lattices can be found in the
Appendix B.

Figure 6 shows the following general features of S(q,t):
For reciprocal lattice points corresponding to fundamen-
tal peaks the weight, w′2, of the fast exponential decay
equals zero and the remaining part with weight w′1 = 1 has
M1 = 0, hence is entirely elastic. For superlattice peaks
the fast decay has a finite weight corresponding to coher-
ent diffuse scattering. However, the scattered intensity is
still mainly elastic because the intensity of the broad line
is small compared to the intensity of the elastic line.

The regions between the reciprocal lattice points corre-
spond to quasielastic diffuse scattering due to lattice dis-
order. The largest differences in the diffusion induced de-
cay rates of the intermediate scattering function are found
near the reciprocal lattice points. However, it is not advis-
able to measure at these positions exactly since the diffuse
intensity will be covered by elastic Bragg scattering.

The values in Figure 6 are calculated for a single scat-
tering element. For more than one element the contribu-
tions of the different types of atoms simply add up as is
shown in the Appendix A.

Since the intensities of diffuse scattering are in general
very low, large detectors with sufficient time resolution
will be required in order to cover a solid angle as large as
possible. Also, could the intensity be concentrated on a
small detector by using focussing optics. In order to avoid
Debye-Scherrer rings the use of single crystalline samples
will be indispensable. Still, the main experimental diffi-
culty will be low count rates. However, the advances which
have been achieved in the recent years in the fields of un-
dulator techniques and high resolution monochromators
give rise to hope for an early application of TDI to the in-
vestigation of diffusion in intermetallic alloys, thus open-
ing a wide range of materials for direct diffusion studies.
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Fig. 6. Representation of the intermediate scattering function
along a section in the 〈001〉 plane in reciprocal space accord-
ing to equation (4) for diffusion in a B2 system as described
in the text. The z-axis of the plots show the decay rates (a,b)
and weights (c,d) of the fast (a,c) and the slow (b,d) expo-
nential decay which together constitute the intermediate scat-
tering function. For reciprocal lattice points corresponding to
fundamental peaks (〈110〉, ⊕) the weights of the fast expo-
nential decay equal zero and the intensity is entirely elastic,
for superlattice peaks (〈100〉, ⊗) the fast decay has a finite
weight corresponding to coherent diffuse scattering. However,
the scattered intensity is mainly elastic because the intensity
of the broad quasielastic line is small compared to the intensity
of the elastic line. The regions between the reciprocal lattice
points correspond to quasielastic diffuse scattering due to lat-
tice disorder.

5 Conclusions

A TDI experiment in Bragg directions on the intermetal-
lic alloy Co60Ga40 indicates that the high intensities
scattered into Bragg directions are mainly elastic. Lower
limits for the elastic contribution of 0.94 for the fundamen-
tal reflection and 0.75 for the superlattice reflection were
found. This result is in accordance with a derivation of the
coherent scattering factor using the Van Hove formalism.
This scattering function is mainly elastic in Bragg direc-
tions except from an underlying isotropic, diffuse com-
ponent, which is probably too small to be detected. We
therefore propose to use diffuse scattering between recip-
rocal lattice points for diffusion studies on crystalline ma-
terials. This has been illustrated on the example of a B2
structure.
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Appendix A: Two or more scattering
components

The coherent scattering function for structures consist-
ing of different scattering elements, contains interference
terms from atoms with different atomic scattering fac-
tors. This makes an extra indication necessary: Different
elements are indicated by m and n, R denotes the total
number of elements. Atomic jumps are described by R rate
equations, one for each element. Spatial Fourier transfor-
mation yields R separate first order differential equations
for the intermediate scattering functions. These equations
can again be written in matrix notation using R jump
matrices An containing jump vectors and frequencies for
atoms of type n. Integration yields R equations for I ′(q, t).
This solution applies to Ijmin (q, t) and the integration con-
stant (K ′jmin )p can be specified by Fourier transformation
of

G′jmin (r, 0) = (1− cni ) δij δmn δ(r), (A.1)

the dynamic part of the correlation function Gjmin (r, t)
which describes the probability of finding an atom of type
n at a position r on sublattice i under the condition that
an atom of type m occupies the position r = 0 on sub-
lattice j at t = 0. The integration constants (K ′jmin )p and
in consequence the I ′jmin vanish for m 6= n which leads to
a decoupling so that spectra for diffuse scattering can be



M. Kaisermayr et al.: Time-domain interferometry for diffusion in ordered alloys 341

w′p =
{αE(q) + [1 + τ12M

p(q)]}{(1− c1)αE(q) + (1− c2)[1 + τ12M
p(q)]}

(1 + α){αE(q)2 + [1 + τ12Mp(q)]2} · (B.3)

calculated separately for each component. The dynamic
part of the intermediate scattering function can then be
written as:

I ′(q, t) =
∑
i,j,m

cjmI
jm
im (q, t). (A.2)

Let L be the total number of sublattices, then I ′(q, t)
is a sum of L × R Lorentzians. Hence, the time depen-
dent part of the total coherent scattering function can be
obtained by calculating the time dependent parts of the
intermediate scattering functions for each element sepa-
rately. The static part of the correlation function vanishes
in the rate equations due to detailed balance. All interfer-
ence between atoms of different kinds are contained in this
static part. The corresponding time independent part of
the intermediate scattering function is calculated by di-
rect spatial Fourier transformation and yields the static
structure factor.

Appendix B: B2-structure

The B2 structure (also CsCl structure) consists of two
simple cubic lattices where the sites of one lattice are in
the center of the cubic unit cell of the other. One sublattice
is mainly occupied by A atoms, the other by B atoms.
Let us suppose that a B2 structure occupied by one sort
of scattering atoms with different concentrations c1 and
c2 on the two sublattices. The hermitized jump matrix is
then of the form

B =
1

8τ12

(
−8

√
αE(q)√

αE(q) −8α

)
, (B.1)

where α = τ12/τ21 and E(q) =
∑8
k=1 exp(iql(k)). The in-

termediate scattering function, S(q, t), is a sum of two ex-
ponentials. Their linewidths are proportional to the eigen-
values Mp of the matrix B and their weights, wp, have
to be calculated from the eigenvectors of B using equa-
tions (4) and (5). The weights are shown in Figure 2 to-
gether with the corresponding eigenvalues. The sum of the
weights for the quasielastic contribution is q-independent:

2∑
i=1

w′i(q) =
2∑
i=1

ci(1− ci). (B.2)

For reciprocal lattice points we expect elastic lines with
weights wBragg = (c1 + c2)2 for fundamental peaks and
wBragg = (c1 − c2)2 for superlattice peaks. In both cases
a very small admixture of quasielastic diffuse scattering

is present, however much too small to be measured. The
weights w′p for diffuse scattering on a B2 structure read

see equation (B.3) above.

If the B2 lattice is occupied by two types of scattering
atoms, as discussed in the Appendix A, four Lorentzians
are expected – two for each component.
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